
1

Smoothed Analysis of the Simplex Method
Daniel Dadush and Sophie Huiberts

Abstract

In this chapter, we give a technical overview of smoothed analyses of the shadow

vertex simplex method for linear programming (LP). We first review the proper-

ties of the shadow vertex simplex method and its associated geometry. We begin

the smoothed analysis discussion with an analysis of the successive shortest path

algorithm for the minimum-cost maximum-flow problem under objective pertur-

bations, a classical instantiation of the shadow vertex simplex method. Then we

move to general linear programming and give an analysis of a shadow vertex based

algorithm for linear programming under Gaussian constraint perturbations.

1.1 Introduction

We recall that a linear program (LP) in n variables and m constraints is of the

form:

max cTx (1.1)

Ax ≤ b,

where x ∈ Rn are the decision variables. The data of the LP are the objective

c ∈ Rn, the constraint matrix A ∈ Rm×n and the corresponding right-hand side

vector b ∈ Rm. We shall refer to P = {x ∈ Rn : Ax ≤ b} as the feasible polyhedron.

Throughout the chapter, we will assume that the reader is familiar with the basics

of linear programming and polyhedral theory (the reader may consult the excellent

book by Matousek and Gärtner (2007) for a reference).

The simplex method, introduced by Dantzig in 1947, is the first procedure de-

veloped for algorithmically solving LPs. It is a class of local search based LP algo-

rithms, which solve LPs by moving from vertex to vertex along edges of the feasible

polyhedron until an optimal solution or unbounded ray is found. The methods dif-

fer by the rule they use for choosing the next vertex to move to, known as the

pivot rule. Three popular pivot rules are Dantzig’s rule, which chooses the edge for
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which the objective gain per unit of slack is maximized (with respect to the current

tight constraints), and Goldfarb’s steepest edge rule together with its approximate

cousin, Harris’ Devex rule, which chooses the edge whose angle to the objective is

minimized.

Organization. In section 1.2, we give a detailed overview the shadow vertex sim-

plex method and its associated geometry. In section 1.3, we analyze the successive

shortest path algorithm for minimum-cost maximum-flow under objective perturba-

tions. In section 1.4, we give an analysis for general LPs under Gaussian constraint

perturbations.

1.2 The Shadow Vertex Simplex Method

The shadow vertex simplex algorithm is a simplex method which, given two objec-

tives c, d and an initial vertex v maximizing c, computes a path corresponding to ver-

tices that are optimal (maximizing) for any intermediary objective λc+(1−λ)d, λ ∈
[0, 1].

While the shadow vertex rule is not generally used in practice, e.g. the steepest

descent rule is empirically far more efficient, it is much easier to analyze from the

theoretical perspective as it admits a tractable characterization of the vertices it

visits. Namely, a vertex can only be visited if it optimizes an objective between c

and d, which can be checked by solving an LP.

In what follows, we overview the main properties of the shadow vertex simplex

method together with how to implement it algorithmically. For this purpose, we

will need the following definitions.

Definition 1.1 (Optimal Face). For P ⊆ Rn a polyhedron and c ∈ Rn, de-

fine P [c] := {x ∈ P : cTx = supz∈P c
Tz} to be the face of P maximizing c. If

supz∈P c
Tz =∞, then P [c] = ∅ and we say that P is unbounded w.r.t. c.

Note that, in this notation, if P [c] = P [d] 6= ∅, for d ∈ Rn, then P [c] = P [λc +

(1− λ)d] for all λ ∈ [0, 1].

Definition 1.2 (Tangent Cone). Let P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm,

be a polyhedron. For x ∈ P , define tightP (x) = {i ∈ [m] : aTi x = bi} to be the

tight constraints at x. The tangent cone at x w.r.t. P is TP (x) := {w ∈ Rn : ∃ε >
0 s.t. x+ εw ∈ P}, the set of movement directions around x in P . In terms of the

inequality representation, TP (x) := {w ∈ Rn : ABw ≤ 0} where B = tightP (x).

The Structure of the Shadow Path. The following lemma provides the general

structure of any shadow path, which will generically induce a valid simplex path.
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Lemma 1.3 (Shadow Path). Let P ⊆ Rn be a polyhedron and c, d ∈ Rn. Then

there exists a unique sequence of faces P (c, d) := (v0, e1, v1, · · · , ek, vk) of P , k ≥ 0,

known as the shadow path of P w.r.t. (c, d), and scalars 0 = λ0 < λ1 < · · · < λk <

λk+1 = 1 such that

1. For all 1 ≤ i ≤ k, we have ei = P [(1− λi)c+ λid] 6= ∅, and moreover e1, . . . , ek
are distinct faces of P .

2. For all 0 ≤ i ≤ k and λ ∈ (λi, λi+1), vi = P [(1− λ)c+ λd].

3. For all 0 < i < k, the faces satisfy vi = ei ∩ ei+1 6= ∅, and if k ≥ 1 then v0 ⊂ e1

and vk ⊂ ek.

Furthermore, the first face is v0 = P [c][d], the face of P [c] maximizing d, and the

last face is vk = P [d][c]. For every i ∈ [k], we have vi−1 = ei[c] = ei[−d] and

vi = ei[−c] = ei[d].

Note that, as a set, the shadow path P (c, d) exactly corresponds to the set of

faces {P [(1 − λ)c + λd] : λ ∈ (0, 1)} optimizing an objective in (c, d). Lemma 1.3

shows that these faces have a useful connectivity structure that we will exploit

algorithmically.

Definition 1.4 (Shadow Path Properties). Given a polyhedron P , c, d ∈ Rn, letting

P (c, d) = (v0, e1, v1, . . . , ek, vk), we use PV (c, d) to denote the subsequence of non-

empty faces of (v0, v1, . . . , vk) and PE(c, d) = (e1, e2, . . . , ek). We call each face

F ∈ P (c, d) a shadow face. We define the shadow path P (c, d) to be non-degenerate

if dim(v0) ≤ 0 and e1, . . . , ek are edges of P . Note that this automatically enforces

that v1, . . . , vk−1 are vertices of P and that dim(vk) ≤ 0. We say that P (c, d) is

proper if P [c][d] 6= ∅.

We are interested in the case when shadow paths are proper and non-degenerate.

For a proper non-degenerate path P (c, d) = (v0, . . . , ek, vk), the set v0 ∪∪ki=1ei is a

connected polygonal path that begins at the vertex v0 = P [c][d] and follows edges

of P , and thus forms a valid simplex path. The final face vk will be non-empty iff

P is bounded w.r.t. d. In this case, vk = P [d][c] is the vertex of P [d] maximizing c.

If vk = ∅, then ek will be an unbounded edge of the form ek = vk−1 + [0,∞) · wk
for which wT

k d > 0, yielding a certificate of the unboundedness of P w.r.t. d.

A useful way to interpret the shadow path is via a two-dimensional projection

induced by c, d. We index this projection by πc,d, where πc,d(z) := (dTz, cTz), and

define ex := (1, 0), ey := (0, 1) to be the generators of the x and y axis in R2

respectively. Under this map, the faces of the shadow path trace a path along the

upper hull of πc,d(P ). The projection interpretation is the reason why Borgwardt

(1977) called the parametric objective method the shadow vertex simplex method

(schatteneckenalgoritmus), which is the most common name for it today.

Lemma 1.5. Let P be a polyhedron, c, d ∈ Rn. For P (c, d) = (v0, e1, v1, . . . , ek, vk),
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Figure 1.1 In (c, d) space, a shadow path starts at the highest vertex and moves to the
rightmost vertex if they exist.

the shadow path satisfies πc,d(P )(ey, ex) = (πc,d(v0), . . . , πc,d(ek), πc,d(vk)). Fur-

thermore, the shadow path πc,d(P )(ey, ex) is non-degenerate and P (c, d) is non-

degenerate iff dim(v0) = dim(πc,d(v0)) and dim(ei) = dim(πc,d(ei)) = 1 for all

i ∈ [k].

Lemma 1.5 in fact implies that non-degeneracy can be restated as requiring πc,d to

be a bijection between S = v0 ∪
⋃k
i=1 ei and its projection πc,d(S). Non-degeneracy

of a shadow path is in fact a generic property. That is, given any pointed polyhedron

P ⊆ Rn and objective d, the set of objectives c for which P (c, d) is degenerate has

measure 0 in Rn. As a consequence, given any c and d, one may achieve non-

degeneracy by infinitessimally perturbing either c or d.

Under the πc,d projection, the faces v0, . . . , vk, except possibly v0, vk which may

be empty, always map to vertices of πc,d(P ), and the faces e1, . . . , ek always map to

edges of πc,d(P ). Assuming v0, vk 6= ∅, then πc,d(v0), πc,d(vk) are the vertices of max-

imum y and x coordinate respectively in πc,d, and the edges πc,d(e1), . . . , πc,d(ek)

follow the upper hull of πc,d(P ) between πc,d(v0) and πc,d(vk) from left to right. In

this view, one can interpret the multipliers λ1 < · · · < λk ∈ (0, 1) from Lemma 1.3

in terms of the slopes of e1, . . . , ek under πc,d. Precisely, if we define the c, d slope

sc,d(ei) := cT(x1 − x0)/dT(x1 − x0), i ∈ [k], where x1, x0 ∈ ei are any two points

with dTx1 6= dTx0 , then sc,d(ei) = −λi/(1−λi). This follows directly from the fact

that the objective (1− λi)c+ λid, λi ∈ (0, 1), is constant on ei. From this, we also

see that 0 > sc,d(e1) > · · · > sc,d(ek), that is the slopes are negative and strictly

decreasing.

The Shadow Vertex Simplex Algorithm. A shadow vertex pivot, i.e. a move

across an edge of P , will correspond to moving in a direction of largest (c, d) slope

from the current vertex. Computing these directions will be achieved by solving

linear programs over the tangent cones. In the context of the successive shortest

path algorithm, these LPs are solved via a shortest path computation, while in the
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Gaussian constraint perturbation model, they are solved explicitly by computing the

extreme rays of the tangent cone. An abstract implementation of the shadow vertex

simplex method is provided in Algorithm 1. While there is technically freedom in

the choice of the maximizer on line 3, under non-degeneracy the solution will in

fact be unique. We state the main guarantees of the algorithm below.

Algorithm 1 The Shadow Vertex Simplex Algorithm

Require: P = {x ∈ Rn : Ax ≤ b}, c, d ∈ Rn, initial vertex v0 ∈ P [c][d] 6= ∅.
Ensure: Return vertex of P [d][c] if non-empty or e ∈ edges(P ) unbounded w.r.t. d.

1: i← 0

2: loop

3: wi+1 ← vertex of argmax{cTw : w ∈ TP (vi), d
Tw = 1} or ∅ if infeasible

4: if wi+1 = ∅ then

5: return vi
6: end if

7: λi+1 ← −wT
i+1c/(1− wT

i+1c)

8: si+1 ← sup{s ≥ 0 : vi + swi+1 ∈ P}
9: ei+1 ← vi+1 + [0, si+1] · wi+1

10: i← i+ 1

11: if si =∞ then

12: vi ← ∅
13: return ei
14: else

15: vi ← vi−1 + siwi
16: end if

17: end loop

Theorem 1.6. Algorithm 1 is correct and finite. On input P ,c,d,v0 ∈ P [c][d] 6=
∅, the vertex–edge sequence v0, e1, v1, . . . , ek, vk computed by the algorithm visits

every face of P (c, d) and the computed multipliers λ1, . . . , λk ∈ (0, 1) form a non-

decreasing sequence which satisfies ei ⊆ P [(1−λi)c+λid] for every i ∈ [k]. If P (c, d)

is non-degenerate, then (v0, e1, v1, . . . , ek, vk) = P (c, d). Furthermore, the number

of simplex pivots performed is then |PE(c, d)|, and the complexity of the algorithm

is that of solving |PV (c, d)| tangent cone programs.

In regard to slopes, the value of the program on line 3 equals the (c, d)-slope

sc,d(ei+1).

While Algorithm 1 still works in the presence of degeneracy, one can no longer

characterize the number of pivots by |PE(c, d)|, though this always remains a lower

bound. This is because it may take multiple pivots to cross a single face of PE(c, d),
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or equivalently, there can be a consecutive block [i, j] of iterations where λi = · · · =
λj .

As is evident from the theorem and the algorithm, the complexity of each iteration

depends on the difficulty of solving the tangent cone programs on line 3. One

instance in which this is easy, is when the inequality system is non-degenerate.

Definition 1.7 (Non-degenerate Inequality System). We say that the system Ax ≤
b, A ∈ Rm×n, b ∈ Rm, m ≥ n, describing a polyhedron P is non-degenerate if P is

pointed and if for every vertex v ∈ P the set tightP (v) is a basis of A.

When the description of P is clear, we say that P is non-degenerate to mean

that its describing system is. We call B ⊆ [m], |B| = n, a basis of A if AB , the

submatrix corresponding to the rows in B, is invertible. A basis B is feasible if

A−1
B bB is a vertex of P . For a non-degenerate polyhedron P and v ∈ vertices(P ),

the extreme rays of the tangent cone at v are simple to compute. More precisely,

letting B = tightP (v) denote the basis for v, the extreme rays of the tangent cone

TP (v) are generated by the columns of −A−1
B . Knowing this explicit description of

the extreme rays of TP (v), the program on line 3 is easy to solve because wi+1 is

always a scalar multiple of a generator of an extreme ray.

The Shadow Plane and the Polar. In the previous subsection, we examined

the shadow path P (c, d) induced by two objectives c, d. This is enough for the result

we prove in section 1.3. For the sake of section 1.4, we generalize the shadow path

slightly by examining the shadow on the plane W = span(c, d). Letting πW denote

the orthogonal projection onto W , we will work with πW (P ), the shadow of P on

W . This will be useful to capture somewhat more global shadow properties. In

particular, it will allow us to relate to the geometry of the corresponding polar, and

allow us to get bounds on the lengths of shadow paths having knowledge of W , but

not of the exact objectives c, d ∈W whose shadow path we will follow.

Definition 1.8 (Shadow on W ). Let P ⊆ Rn be a polyhedron and let W ⊆ Rn
be a 2-dimensional linear subspace. We define the shadow faces of P w.r.t. W by

P [W ] = {P [c] : c ∈ W \ {0}}, that is the set of faces of P optimizing a non-zero

objective in W . Let PV [W ],PE [W ] denote the set of faces in P [W ] projecting to

vertices and edges of πW (P ) respectively. We define P [W ] to be non-degenerate if

every face F ∈ P [W ] satisfies dim(F ) = dim(πW (F )).

The following lemma provides the straightforward relations between shadow

paths on W and the number of vertices of πW (P ).

Lemma 1.9. Let P ⊆ Rn be a polyhedron, W ⊆ Rn, dim(W ) = 2. Then for

c, d ∈ W , if the path P (c, d) is non-degenerate and proper, then the number of

pivots performed by Algorithm 1 on input P, c, d, P [c][d] is bounded by |PV [W ]| =

|vertices(πW (P ))|. Furthermore, if P [W ] is non-degenerate and span(c, d) = W ,

then P (c, d) is non-degenerate.
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Figure 1.2 On the left, we see a polyhedron P projected on a plane W . The boundary of
the projection uniquely lifts into the polyhedron. On the right, we see the corresponding
polar polytope Q = P ◦ with the intersection Q∩W marked. Every facet of Q intersected
by W is intersected through its relative interior.

Moving to the polar view, we assume that we start with a polyhedron of the form

P = {x ∈ Rn : Ax ≤ 1}. Define the polar polytope as Q = conv(a1, . . . , am), the

convex hull of a1, . . . , am, where a1, . . . , am are the rows of the constraint matrix

A. We use a slightly different definition of the polar polytope than is common. The

standard definition takes the polar to be

P ◦ := {y ∈ Rn : yTx ≤ 1,∀x ∈ P} = conv(Q, 0).

We have P ◦ 6= Q exactly when P is unbounded. We depict a polyhedron and its

polar polytope in Figure 1.2.

The following lemma, which follows from relatively standard polyhedral duality

arguments, tells us that one can control the vertex count of the shadow using the

corresponding slice of the polar. It provides the key geometric quantity we will

bound in section 1.4. Proving the lemma is Exercise 1.2.

Lemma 1.10. Let P = {x ∈ Rn : Ax ≤ 1} be a polyhedron with a non-degenerate

shadow on W and Q its polar polytope. Then

|vertices(πW (P ))| ≤ |edges(Q ∩W )|.

If P is bounded then the inequality is tight.

1.3 The Successive Shortest Path Algorithm

In this section, we will study the classical successive shortest path (SSP) algorithm

for the minimum-cost maximum-flow problem under objective perturbations.
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The Flow Polytope. Given a directed graph G = (V,E) with source s ∈ V and

sink t ∈ V , a vector of positive arc capacities u ∈ RE+, and a vector of arc costs

c ∈ (0, 1)E , we want to find a flow f ∈ RE+ satisfying∑
ij∈E

fij −
∑
ji∈E

fji = 0,∀i ∈ V \ {s, t} (1.2)

0 ≤ fij ≤ uij ,∀ij ∈ E

that maximizes the amount of flow shipped from s to t, and among such flows

minimizes the cost cTf . We denote the set of feasible flows, that is, those satisfying

(1.2), by P .

For simplicity of notation in what follows, we assume that G does not have

bidirected arcs, that is E contains at most one of any pair {ij, ji}. To make the

identification with the shadow vertex simplex method easiest, we consider only the

case in which every shortest s-t path is unique.

The SSP Algorithm. We now describe the algorithm. For this purpose, we in-

troduce some notation. Letting
←−
ij = ji, we define the reverse arcs

←−
E := {ji :

ij ∈ E},
←→
E = E ∪

←−
E , and extend c to

←−
E by letting cji = −cij for ji ∈

←−
E . For

w ∈ {−1, 0, 1}E , we define its associated subgraph R = {a ∈ E : wa = 1} ∪ {←−a :

a ∈ E,wa = −1} and vice versa, noting that cTw =
∑
a∈R ca. Given a feasible

flow f ∈ P , the residual graph N [f ] has the same node set V and arc set A[f ] =

F [f ] ∪R[f ] ∪B[f ], where F [f ] = {a ∈ E : fa = 0}, R[f ] = {←−a : a ∈ E : fa = ua},
B[f ] = {a,←−a : a ∈ E, 0 < fa < ua} are called forward, reverse and bidirected

arcs w.r.t. f respectively. The combinatorial description of the SSP algorithm is

provided below:

1. Initialize f to 0 on E.

2. While N [f ] contains an s-t path: compute a shortest s-t path R in N [f ] with

respect to the costs c with associated vector wR ∈ {−1, 0, 1}E . Augment f along

R until a capacity constraint becomes tight, that is update f ← f+sRwR where

sR = max{s ≥ 0 : f + sRwR ∈ P}. Repeat.

3. Return f .

We recall that a shortest s-t path is well-defined if and only if N [f ] does not

contain negative cost cycles.

For the SSP algorithm to take many iterations to find the optimum solution, the

difference between the path lengths in each iteration should be very small. As long

as the costs are not adversarially chosen, it seems unlikely that this should happen.

That is what we formalize and prove in the remainder of this chapter.

The SSP as Shadow Vertex. We now show that the SSP algorithm corresponds

to running the shadow vertex simplex algorithm on P applied to the starting ob-
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jective being −c and the target objective d being the flow from s to t, that is

dTf :=
∑
sj∈E fsj . This correspondence will also show correctness of the SSP.

To see the link to the shadow vertex simplex algorithm, we reinterpret prior

observations polyhedrally. Firstly, it is direct to check that the face P [d] is the set

of maximum s-t flows. In particular, the maximum-flow of minimum cost is then

P [d][−c]. Since the arc costs are positive on E, any non-zero flow f ∈ P must

incur positive cost. Therefore, the zero flow is the unique cost minimizer, that is

{0} = P [−c] = P [−c][d]. Thus, by Theorem 1.6, one can run the shadow vertex

simplex algorithm on the flow polytope P , objectives −c,d and starting vertex 0

and get a vertex v ∈ P [d][−c] as output.

To complete the identification, one need only show that the tangent cone LPs

correspond to shortest s-t path computations. This is a consequence of the following

lemma, whose proof is left as Exercise 1.3.

Lemma 1.11. For f ∈ P with residual graph N [f ], the following hold:

1. The tangent cone can be explicitly described using flow conservation and tight

capacity constraints as TP (f) := {w ∈ RA :
∑
ij∈A wij −

∑
ji∈A wji = 0 ∀i ∈

V \ {s, t}, wa ≥ 0 ∀a ∈ F [f ], wa ≤ 0 ∀a ∈ R[f ]}.
2. If N [f ] does not contain negative cost cycles, then any vertex solution to the

program inf{cTw : w ∈ TP (f), dTw = δ}, δ ∈ {±1} corresponds to a minimum-

cost s-t path for δ = 1 and t-s path for δ = −1, which by convention has cost ∞
if no such path exists.

3. If f is a shadow vertex and the shadow path is non-degenerate, the value of the

above program for δ = 1 equals the slope sc,d(e) of the shadow edge e leaving f

and the value of the program for δ = −1 equals the slope sc,d(e
′) of the shadow

edge e′ entering f .

It will be useful to note here that since we interpolate from −c, that is minimizing

cost, the shadow P (−c, d) will in fact follow edges of the lower hull of πc,d(P )

from left to right. In particular, the (c, d) slopes (cost per unit of flow) of the

corresponding edges will all be positive and form an increasing sequence. The (c, d)

slope of a shadow edge is always equal to the cost of some s-t path
←→
E . Since any

such path uses at most n−1 edges of cost between (−1, 1), the slope of any shadow

edge is strictly less than n − 1, which will be crucial to the analysis in the next

section. By the correspondence of slopes with multipliers, the slope bound implies

the rather strong property that any maximizer of −c + n−1
n d in P , is already on

the optimal face P [d][−c].

1.3.1 Smoothed Analysis of the SSP

As shown by Zadeh (1973), there are inputs where the SSP algorithm requires

an exponential number of iterations to converge. In what follows, we explain the
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main result of Brunsch et al. (2015), which shows that exponential behavior can be

remedied by slightly perturbing the edge costs.

The perturbation model is known as the one-step model, which is a general model

where we only control the support and maximum density of the perturbations.

Precisely, each edge cost ce will be a continuous random variable supported on

(0, 1), whose maximum density is upper bounded by a parameter φ ≥ 1. The upper

bound on φ is equivalent to the statement that for any interval [a, b] ⊆ [0, 1], the

inequality Pr[ce ∈ [a, b]] ≤ φ|b− a|, known as the interval lemma, holds. Note that

as φ→∞, the cost vector c can concentrate on a single vector, and thus converge

to a worst-case instance. The main result of this section is as follows.

Theorem 1.12 (Brunsch et al. (2015)). Let G = (V,E) be a graph with n nodes

and m arcs, a source s ∈ V and sink t ∈ V , and positive capacities u ∈ RE+. Then

for a random cost vector c ∈ (0, 1)E with independent coordinates having maximum

density φ ≥ 1, the expected number of iterations of the SSP algorithm on G is

bounded by O(mnφ).

As with many smoothed analysis results, we want to quantify some form of ”ex-

pected progress” per iteration, and the difficulty lies in identifying enough ”inde-

pendent randomness” such that not all randomness is used up in the first iteration.

To prove the theorem, we will upper bound the expected number of edges on

the random shadow path followed by the SSP. The main idea will be to bound the

expected number of times an arc of G can used by the s-t paths found by the SSP

algorithm.

For the analysis, we maintain the notation from the previous section together with

the following definitions. For f ∈ P , we identify the tight constraints tightP (f) with

arcs in
←→
E , namely a ∈ tightP (f) iff a ∈ E and fij = 0 or a ∈

←−
E and fij = uij .

Similarly, we define Pa = {f ∈ P : a ∈ tightP (f)}. To identify (c, d) slopes, for any

f ∈ P , we use ps,t(f), pt,s(f) ∈ R ∪ {±∞} to denote the cost of the shortest s-t

and t-s path in N [f ]. Similarly, for a ∈
←→
E , we use p±as,t (f), p±at,s (f) to denote the

corresponding minimum-cost paths not using arc a (superscript −a) and using arc

a (superscript +a).

Proof of Theorem 1.12 To prove the theorem, we show that Ec[|PE(−c, d)|], the

expected shadow vertex count, is bounded by O(mnφ). Since the cost vector c is

generic, the shadow path P (−c, d) is non-degenerate with probability 1. By The-

orem 1.6, this will establish the desired bound on the number of shadow vertex

pivots.

Let (v0, e1, v1, . . . , ek, vk) denote the random shadow path P (−c, d), and similarly

for a ∈
←→
E , let (va0 , e

a
1 , v

a
1 , . . . , e

a
ka
, vaka) be the shadow path Pa(−c, d), which we may

assume to be non-degenerate with probability 1. Note that since P is a polytope,

each shadow path is either ∅ (if the corresponding facet is infeasible) or contains no

empty faces. By the natural extension of Lemma 1.11 to facets of P , we have that
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for a ∈
←→
E and i ∈ [ka], the (c, d) slope of edge eai is equal to sc,d(e

a
i ) = pa−s,t (vai−1) =

−pa−t,s (vai ), i.e. the corresponding shortest path length restricted to not using arc a.

Since each vertex vi−1 ⊂ ei, i ∈ [k], is contained in its outgoing edge, there must

exist a tight constraint a ∈ tightP (vi−1) such that a /∈ tightP (ei). This yields the

following direct inequality:

|PE(−c, d)| =
k∑
i=1

1 ≤
∑
a∈
←→
E

k∑
i=1

1[a ∈ tightP (vi), a /∈ tightP (ei)]. (1.3)

Fixing a ∈
←→
E , we now show that the corresponding term in (1.3) is bounded on

expectation over c by O(nφ). For i ∈ [k], since the (c, d) slope satisfies sc,d(ei) =

ps,t(vi−1), we know that a ∈ tightP (vi−1)\tightP (ei) implies that the minimum-cost

s-t path in N [vi] uses arc a. In particular, ps,t(vi−1) = pa+
s,t (vi−1). Since −pt,s(vi−1)

is the (c, d) slope of the incoming edge at vi−1, by the increasing property of slopes

we also have the inequality −pt,s(vi−1) ≤ pa+
s,t (vi−1). Putting this information to-

gether,

k∑
i=1

1[a ∈ tightP (vi−1),a /∈ tightP (ei)]

≤
k−1∑
i=0

1[a ∈ tightP (vi),−pt,s(vi) ≤ pa+
s,t (vi) ≤ ps,t(vi)]

≤
k−1∑
i=0

1[a ∈ tightP (vi),−pa−t,s (vi) ≤ pa+
s,t (vi) ≤ pa−s,t (vi)],

where last inequality follows from the trivial inequalities pa−s,t (vi) ≥ ps,t(vi) and

pa−t,s (vi) ≥ pt,s(vi). We now make the link to the shadow on Pa. Since vi is a shadow

face in P (−c, d), a ∈ tightP (vi) implies that vi is also a shadow face of Pa(−c, d).

By this containment and the characterization of edge slopes in Pa(−c, d) as shortest

path lengths, we have that

k−1∑
i=0

1[a ∈ tightP (vi),−pa−t,s (vi) ≤ pa+
s,t (vi) ≤ pa−s,t (vi)]

=

k−1∑
i=0

1[vi ∈ Pa(−c, d),−pa−t,s (vi) ≤ pa+
s,t (vi) ≤ pa−s,t (vi)]

≤
ka∑
i=0

1[−pa−t,s (vai ) ≤ pa+
s,t (vai ) ≤ pa−s,t (vai )]

≤ 2 +

ka−1∑
i=1

1[sc,d(e
a
i ) ≤ pa+

s,t (vai ) ≤ sc,d(eai+1)].

We may now usefully take an expectation with respect to ca. The crucial observa-
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Pa(c, d) P (c, d)

Figure 1.3 Any vertex of P (c, d) is a vertex of some Pa(c, d), and the outgoing edge on
P (c, d) has slope between the slopes of the adjacent edges of Pa(c, d).

tion here is that by independence of the components of c, the shadow path Pa(−c, d)

is independent of the cost ca, noting that the flow along arc a is fixed in Pa. Further-

more, expressing a = pq ∈
←→
E , we may usefully decompose pa+

s,t (vai ) = ca + ra+
s,t (vai ),

where ra+
s,t (vai ) is the sum of the cost of the shortest s-p and q-t paths in N [vai ].

Noting that N [vai ] does not contain ←−a , we see that ra+
s,t (vai ) is clearly independent

of ca. Using that edge slopes satisfy 0 < sc,d(e
a
1) < · · · < sc,d(e

a
ka

) ≤ n − 1, where

the last inequality follows as before by the correspondence with s-t path lengths,

together with the interval lemma, we bound the expectation as follows:

Eca [

ka−1∑
i=1

1[sc,d(e
a
i ) ≤ pa+

s,t (vai ) ≤ sc,d(eai+1)]]

=

ka−1∑
i=1

Pr
ca

[ca + ra+
s,t (vai ) ∈ [sc,d(e

a
i ), sc,d(e

a
i+1)]]

≤
ka−1∑
i=1

φ
(
sc,d(e

a
i+1)− sc,d(eai )

)
= φ

(
sc,d(e

a
ka)− sc,d(ea1)

)
≤ (n− 1)φ.

Putting it all together, using that |
←→
E | = 2m, we derive the desired expected bound

Ec[|PE(−c, d)|] ≤
∑
a∈
←→
E

Ec[
k∑
i=1

1[a ∈ tightP (vi−1), a /∈ tightP (ei)]]

≤ 4m+
∑
a∈
←→
E

Ec[
ka−1∑
i=1

1[sc,d(e
a
i ) ≤ pa+

s,t (vai ) ≤ sc,d(eai+1)]]

≤ 4m+ 2mφ(n− 1) = O(mnφ).
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1.4 LPs with Gaussian Constraints

The Gaussian constraint perturbation model in this section was the first smoothed

complexity model to be studied and was introduced by Spielman and Teng (2004).

While not entirely realistic, since it does not preserve for example the sparsity

structure seen in most real-world LPs, it does show that the worst-case behavior of

the simplex method is very brittle. Namely, it shows that a shadow vertex simplex

method efficiently solves most LPs in any big enough neighborhood around a base

LP. At a very high level, this because an average shadow vertex pivot covers a

significant fraction of the “distance” between the initial and target objective.

The Gaussian Constraint Perturbation Model. In this perturbation model,

we start with any base LP

max cTx, Āx ≤ b̄, (Base LP)

Ā ∈ Rm×n, b̄ ∈ Rm, c ∈ Rn \ {0}, where the rows of (Ā, b̄) are normalized to have

`2 norm at most 1. From the base LP, we generate the smoothed LP by adding

Gaussian perturbations to both the constraint matrix Ā and the right-hand side

b̄. Precisely, the data of the smoothed LP is A = Ā + Â, b = b̄ + b̂, c where the

perturbations Â,b̂ have i.i.d. mean 0, variance σ2 Gaussian entries. The goal is to

solve

max cTx, Ax ≤ b. (Smoothed LP)

Note that we do not need to perturb the objective in this model, though we do

require that c 6= 0. The base LP data must be normalized for this definition to make

sense, since otherwise one could scale the base LP data up to make the effective

perturbation negligible.

As noted earlier, the strength of the shadow vertex simplex algorithm lies in

it being easy to characterize whether a basis is visited given the starting and final

objective vectors. There is no dependence on decisions made in previous pivot steps.

To preserve this independence, we have to be careful with how we find our initial

vertex and objective. On the one hand, if we start out knowing a feasible basis

B ⊂ [m] of the smoothed LP, we cannot just set d =
∑
i∈B ai, where a1, . . . , am

denote the rows of A. This would cause the shadow plane span(c, d) to depend on

A and make our calculations rather more difficult. On the other hand, we cannot

choose our starting objective d independently of A, b and find the vertex optimizing

it, because that is the very problem that we aim to solve. We resolve this by

analyzing the expected shadow vertex count on a plane that is independent of

A, b and designing an algorithm that uses the shadow vertex simplex method as a

subroutine only on objectives that lie inside such pre-specified planes.

Smoothed Unit LPs. As a further simplification of the probabilistic analysis, we

restrict our shadow bounds to LP’s with right-hand side equal to 1 and only A
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perturbed with Gaussian noise:

max cTx, Ax ≤ 1. (Smoothed Unit LP)

This assumption guarantees that 0 is a feasible solution. In the rest of this subsec-

tion, we reduce solving (Smoothed LP) to solving (Smoothed Unit LP) and show

how to solve (Smoothed Unit LP).

The next theorem is the central technical result of this section and will be proven

in subsection 1.4.2. The bound carries over to the expected number of pivot steps

of the shadow vertex simplex method on a smoothed unit LP with c, d in a fixed

plane using Lemma 1.9 and Lemma 1.10.

Theorem 1.13. Let W ⊂ Rn be a fixed two-dimensional subspace, m ≥ n ≥ 3 and

let a1, . . . , am ∈ Rn be independent Gaussian random vectors with variance σ2 and

expectations of norm at most 1. Then the expected number of edges is bounded by

E[|edges(conv(a1, . . . , am)∩W )|] = O(n2
√

lnm σ−2 +n2.5 lnm σ−1 +n2.5 ln1.5m).

The linear programs we solve and their shadows are non-degenerate with proba-

bility 1, so the above theorem will also bound the expected number of pivot steps

of a run of the shadow vertex simplex method.

First, we describe an algorithm that builds on this shadow path length bound to

solve general smoothed LP’s. After that, we will sketch the proof of Theorem 1.13.

Two-Phase Interpolation Method. Given data A, b, c, define the Phase I Unit

LP:

max cTx (Phase I Unit LP)

Ax ≤ 1

and the Phase II interpolation LP with parametric objective for γ ∈ (−∞,∞)

max cTx+ γλ (Int. LP)

Ax+ (1− b)λ ≤ 1

0 ≤ λ ≤ 1.

We claim that, if we can solve smoothed unit LP’s, then we can use the pair

(Phase I Unit LP) and (Int. LP) to solve general smoothed LP’s.

Writing P for the feasible set of (Int. LP) and eλ for the basis vector in the

direction of increasing λ, the optimal solution to (Phase I Unit LP) corresponds

to P [−eλ][c]. Assuming that (Smoothed LP) is feasible, its optimal solution corre-

sponds to P [eλ][c]. Both (Phase I Unit LP) and (Int. LP) are unit LP’s. We first

describe how to solve (Smoothed LP) given a solution to (Phase I Unit LP).

If (Smoothed LP) is unbounded (i.e., the system cTx > 0, Ax ≤ 0 is feasible),

this will be detected during Phase I as (Unit LP) is also unbounded.

Let us assume for the moment that (Smoothed LP) is bounded and feasible
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(i.e., has an optimal solution). We can start the shadow vertex simplex method

from the vertex P [−eλ][c] at objective γeλ + c, for some γ < 0 small enough, and

move to maximize eλ to find P [eλ][c].

If (Smoothed LP) is infeasible but bounded, then the shadow vertex run will

terminate at a vertex having λ < 1. Thus, all cases can be detected by the two-

phase procedure.

We bound the number of pivot steps taken to solve (Int. LP) given a solution to

(Unit LP), and after that we describe how to solve (Unit LP).

Consider polyhedron P ′ = {(x, λ) ∈ Rn+1 : Ax + (1 − b)λ ≤ 1}, the slab H =

{(x, λ) ∈ Rd+1 : 0 ≤ λ ≤ 1} and let W = span(c, eλ). In this notation, P = P ′ ∩H
is the feasible set of (Int. LP) and W is the shadow plane of (Int. LP). We bound

the number of vertices in the shadow πW (P ) of (Int. LP) by relating it to πW (P ′).

The constraint matrix of P ′ is (A, 1 − b), so the rows are Gaussian distributed

with variance σ2 and means of norm at most 2. After rescaling by a factor 2 we

satisfy all the conditions for Theorem 1.13 to apply.

Since the shadow plane contains the normal vector eλ to the inequalities 0 ≤ λ ≤
1, these constraints intersect the shadow plane W at right angles. It follows that

πW (P ′ ∩H) = πW (P ′) ∩H. Adding 2 constraints to a 2D polyhedron can add at

most 2 new edges, hence the constraints on λ can add at most 4 new vertices. By

combining these observations, we directly derive the following lemma.

Lemma 1.14. If (Unit LP) is unbounded, then (Smoothed LP) is unbounded. If

(Unit LP) is bounded, then given an optimal solution to (Unit LP) one can solve

(Smoothed LP) using an expected O(n2
√

lnm σ−2 + n2.5 lnm σ−1 + n2.5 ln1.5m)

shadow vertex simplex pivots over (Int. LP).

Given the above, our main task is now to solve (Unit LP), i.e., either to find

an optimal solution or to determine unboundedness. The simplest algorithm that

can operate using only pre-determined shadow planes is Borgwardt’s dimension-by-

dimension (DD) algorithm.

DD Algorithm. The DD algorithm solves Unit LP by iteratively solving the

restrictions:

max ck
T
x (Unit LPk)

Ax ≤ 1

xi = 0, ∀i ∈ {k + 1, . . . , n},

where k ∈ {1, . . . , n} and ck := (c1, . . . , ck, 0, . . . , 0). We assume that c1 6= 0 without

loss of generality. The crucial observation in this context is that the optimal vertex

v∗ of (Unit LPk), k ∈ {1, . . . , n− 1}, is generically on an edge w∗ of the shadow of

(Unit LPk+1) with respect to ck and ek+1. To initialize the (Unit LPk+1) solve, we

move to a vertex v0 of the edge w∗ and compute an objective d ∈ span(ck, ek+1)
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uniquely maximized by v0. Noting that ck+1 ∈ span(ck, ek+1), we then solve (Unit

LPk+1) by running the shadow vertex simplex method from v0 with starting objec-

tive d and target objective ck+1.

We note that Borgwardt’s algorithm can be applied to any LP with a known fea-

sible point as long as appropriate non-degeneracy conditions hold (which occur with

probability 1 for smoothed LPs). Furthermore, (Unit LP1) is trivial to solve since

the feasible region is an interval whose endpoints are straightforward to compute.

By combining the arguments above, we get the following theorem.

Theorem 1.15. Let Sk, k ∈ {2, . . . , n}, denote the shadow of (Unit LPk) on

Wk = span(ck−1, ek). Then, if each (Unit LPk) and shadow Sk is non-degenerate for

k ∈ {2, . . . , n}, the DD algorithm solves (Unit LP) using at most
∑n
k=2|vertices(Sk)|

number of pivots.

To bound the number of vertices of Sk, we first observe that the feasible set of

(Unit LPk) does not depend on coordinates k + 1, . . . , n of the constraints vectors.

Ignoring those, it is clear that there is an equivalent unit LP to (Unit LPk) in just

k variables. This equivalent unit LP has Gaussian distributed rows with variance

σ2 and means of norm at most 1.

Using Theorem 1.15 with the shadow bounds in Theorem 1.13, for k ≥ 3, and

Theorem 1.18 (proven below), for k = 2, we get the following complexity estimate

for solving (Smoothed Unit LP).

Corollary 1.16. The program (Smoothed Unit LP) can be solved by the DD algo-

rithm using an expected number of shadow vertex pivots bounded by

n∑
k=2

E[|edges(conv(a1, . . . , am)∩Wk)|] = O(n3
√

lnm σ−2+n3.5σ−1 lnm+n3.5 ln3/2m).

1.4.1 The Shadow Bound in Two Dimensions

As a warm-up before the proof sketch of Theorem 1.13, we look at the easier

two-dimensional case. We bound the expected complexity of the convex hull of

Gaussian perturbed points. The proof is much simpler than the shadow bound in

higher dimensions but it contains many of the key insights we need.

First, we state a simple lemma. Proving this lemma is Exercise 1.4.

Lemma 1.17. Let X ∈ R be a random variable with E [X] = µ and Var(X) = τ2.

Then X satisfies

E
[
X2
]

E [|X|]
≥ (|µ|+ τ)/2.

Theorem 1.18. For points a1, . . . am ∈ R2 independently Gaussian distributed,

each with covariance matrix σ2I2 and ‖E[ai]‖ ≤ 1 for all i ∈ [m], the convex hull

Q := conv(a1, . . . , am) has O(σ−1 +
√

lnm) edges in expectation.



Smoothed Analysis of the Simplex Method 17

Proof We will prove that, on average, the edges of Q are long and the perimeter

of Q is small. This is sufficient to bound the expected number of edges.

For i, j ∈ [m], i 6= j, let Ei,j denote the event that ai and aj are the end points

of an edge of Q. By linearity of expectation we have the following equality:

E[perimeter(Q)] =
∑

1≤i<j≤m

E[‖ai − aj‖ | Ei,j ] Pr[Ei,j ].

We lower bound the right-hand side by taking the minimum over all conditional

expectations and get∑
1≤i<j≤m

E[‖ai − aj‖ | Ei,j ] Pr[Ei,j ] ≥ min
k 6=l

E[‖ak − al‖ | Ek,l]
∑

1≤i<j≤m

Pr[Ei,j ].

Dividing on both sides, we can estimate the expected number of edges

E[|edges(Q)|] =
∑

1≤i<j≤m

Pr[Ei,j ] ≤
E[perimeter(Q)]

mink 6=l E[‖ak − al‖ | Ek,l]
. (1.4)

We are left to bound the numerator and denominator on the right-hand side. For

the first, we observe that Q is convex and thus has perimeter at most that of any

containing disc. This yields the bound

E[perimeter(Q)] ≤ E[2πmax
i
‖ai‖] ≤ 2π(1 + 6σ

√
lnm), (1.5)

using standard Gaussian tail bounds.

We are left to lower bound the denominator. Fix k = 1, l = 2 without loss of

generality. The quantity of interest is

E[‖a1 − a2‖ | E1,2] =

∫
R2

∫
R2‖a1 − a2‖Pr[E1,2]µ1(a1)µ2(a2)da1da2∫
R2

∫
R2 Pr[E1,2]µ1(a1)µ2(a2)da1da2

where µi is the probability density of ai and the probability of E1,2 := E1,2(a1, . . . , an)

is taken over the randomness in a3, a4, . . . , am. To get control on the event E1,2, we

perform a change of coordinates from a1, a2 ∈ R2 to t ∈ [0,∞], θ ∈ S1, h1, h2 ∈ R
satisfying

a1 = tθ +Rθ(h1)

a2 = tθ +Rθ(h2)

where Rθ : R→ θ⊥ is the isometric linear embedding of R into the linear subspace

orthogonal to θ with Rθ(1) having positive first coordinate. This transformation is

uniquely defined and continuous whenever a1 and a2 are linearly independent and

θ has non-zero first coordinate, which happens with probability 1. The Jacobian of

this transformation is |h1 − h2| and we can rewrite the above fraction as∫∞
0

∫
S1
∫∞
−∞

∫∞
−∞|h1 − h2|2 Pr[E1,2]µ1(tθ +Rθ(h1))µ2(tθ +Rθ(h2))dh1dh2dθdt∫∞

0

∫
S1
∫∞
−∞

∫∞
−∞|h1 − h2|Pr[E1,2]µ1(tθ +Rθ(h1))µ2(tθ +Rθ(h2))dh1dh2dθdt

.
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The event E1,2 is equivalent to asking that either θTai ≤ t for all i = 3, 4, . . . ,m or

θTai ≥ t for all i = 3, 4, . . . ,m. This makes E1,2 a function of only a3, . . . , an and θ

and t, i.e. its value does not depend on h1, h2.

Now, we use that
∫
g(p)h(p)dp∫
g(p)dp

≥ infp h(p) for any positive integrable g, h and find

E[‖a1 − a2‖ | E1,2] ≥ inf
t,θ

∫∞
−∞

∫∞
−∞|h1 − h2|2µ1(tθ +Rθ(h1))µ2(tθ +Rθ(h2))dh1dh2∫∞

−∞
∫∞
−∞|h1 − h2|µ1(tθ +Rθ(h1))µ2(tθ +Rθ(h2))dh1dh2

= inf
t,θ

∫∞
−∞ z2

(∫∞
−∞ µ1(Rθ(h1))µ2(Rθ(h1 − z))dh1

)
dz∫∞

−∞|z|
(∫∞
−∞ µ1(Rθ(h1))µ2(Rθ(h1 − z))dh1

)
dz
,

substituting z = h1 − h2 and simplifying. For fixed t, θ, we can reinterpret the last

fraction as E[Z2]/E[|Z|] for Z a random variable with probability density propor-

tional to ∫ ∞
−∞

µ1(Rθ(h1))µ2(Rθ(h1 − z))dh1.

This is the same probability density as that of the difference of two independent

Gaussian random variables each of variance σ2, which means that Z has variance

2σ2. If we apply Lemma 1.17 to Z, we deduce E[‖a1 − a2‖ | E1,2] ≥ σ/
√

2. We

conclude that the expected total number of edges is bounded from above by

E[edges(Q)] ≤ 2π
1 + 6σ

√
lnm

σ/
√

2
≤ 9σ−1 + 54

√
lnm.

1.4.2 The Shadow Bound in Higher Dimensions

In this section we sketch the proof of Theorem 1.13. For the remainder of this

section, let a1, . . . , am ∈ Rn be independent variance σ2 Gaussian random vectors,

Q := conv(a1, . . . , am) and W ⊆ Rn be a fixed 2D plane.

Our task is to bound E[|edges(Q ∩ W )|]. The strategy will be the same as in

Theorem 1.18, namely to relate the perimeter and expected minimum edge length. A

first observation is that an edge of Q∩W w.p. 1 takes the form conv(ai : i ∈ B)∩W ,

where B ⊆ [m], |B| = n, and conv(ai : i ∈ B) is a facet of Q (see Figure 1.2). From

here, an identical argument as for (1.4) yields the following edge counting lemma.

Lemma 1.19. For a basis B ⊆ [m], |B| = n, let EB denote the event that

conv(ai : i ∈ B) ∩W is an edge of Q ∩W . Then, the following bound holds:

E[|edges(Q ∩W )|] ≤ E[perimeter(Q ∩W )]

minB⊆[m],|B|=n E[length(conv(ai : i ∈ B) ∩W ) | EB ]
.

The numerator in Lemma 1.19 can be bounded along the same lines as in Theo-

rem 1.18.
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Lemma 1.20. E[perimeter(Q ∩W )] ≤ E[perimeter(πW (Q))] ≤ O(1 + σ
√

lnm).

We now restrict our attention to lower bounding E[length(conv(ai : i ∈ B)∩W ) |
EB ] for a fixed basis B ⊆ [m], where w.l.o.g. we may assume that B = {1, . . . , n}.

Just like we did in the proof of Theorem 1.18, we perform a change of variables.

The first part of the new parametrization of a1, . . . , an consists of their containing

affine subspace H, described by θ ∈ Sn−1, t ≥ 0 satisfying

aff(a1, . . . , an) =: H = {x ∈ Rn : θTx = t for all i ∈ [n]}.

This is depicted in Figure 1.4, with conv(ai : i ∈ B)∩W marked by the line segment

K.

To describe the location of the points inside the hyperplane H, we use a family

of orthonormal embeddings R := Rθ : Rn−1 → θ⊥, where the points b1, . . . , bn
satisfy tθ + Rθ(bi) = ai, ∀i ∈ [n]. A simple choice for Rθ is Rθ(b) := (b, 0)− (en +

θ)(θT(b, 0))/(1 + θn), which first sends b→ (b, 0) ∈ (en)⊥ and composes it with the

rotation which sends en to θ and fixes span(en, θ)
⊥. The properties of this change

of variables are given below.

Theorem 1.21. The change of variables is well-defined with probability 1 and has

Jacobian (n − 1)!vol(conv(b1, . . . , bn)). If we fix θ, t then the induced probability

density function of b1, . . . , bn is proportional to vol(conv(b1, . . . , bn))
∏n
i=1 µi(Rbi),

where µi is the probability density function of ai for each i ∈ [n].

Define the line ` ⊂ Rn−1 to satisfy H ∩W = tθ + R`. In this notation we get

conv(a1, . . . , an)∩W = tθ+R(conv(b1, . . . , bn)∩`). The event EB holds when θTai >

t for all i = n+1, . . . ,m or θTai < t for all i = n+1, . . . ,m (i.e., conv(a1, . . . , an) is

a facet of Q), which we denote by EB,f , and conv(bi : i ∈ B)∩` has positive length,

which we denote by EB,l. Just like in the two-dimensional case, after conditioning

on θ, t, the events EB,f and EB,l become independent. In particular, after this

conditioning, EB,l only depends on b1, . . . , bn and EB,f is independent of b1, . . . , bn.

Given this independence, we may restrict our attention to proving a lower bound

on E[length(conv(b1, . . . , bn)∩ `) | EB,l], where b1, . . . , bn are conditioned on a fixed

θ and t. To analyze the expected edge length, we will need the following concepts.

Definition 1.22. Let ω ∈ Rn, ‖ω‖2 = 1 and p ∈ ω⊥ such that ` = p+ Rω and let

L := conv(bi : i ∈ B) ∩ `. For any q ∈ ω⊥, define the set of convex combinations

C(q) := {λ ∈ Rn+ :

n∑
i=1

λi = 1,

n∑
i=1

λiπ
⊥
ω (bi) = q},

whose `1 diameter we denote by ‖C(q)‖1, which is 0 by convention if C(q) =

∅. Let γ := ‖C(p)‖1. Define z ∈ Rn to be the unique up to sign solution to∑n
i=1 ziπω⊥(bi) = 0 with ‖z‖1 = 1 (uniqueness holds w.p. 1).

Some preliminary remarks on the above definitions. ω is the direction of the
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H

W

a3

a2

a1

K
K′

Figure 1.4 The vectors a1, . . . , an are conditioned for conv(a1, . . . , an) to intersect W and
lie in H. The short dotted line segment K = W ∩H ∩conv(a1, a2, a3) is the edge of Q∩W
induced by the basis and the longer dotted line segment K′ is the longest chord of the
simplex parallel to the line H ∩W . We aim to lower bound the expected length of the line
segment K.

line ` and {p} = πω⊥(`) is its intersection with ω⊥. L is the tentative edge whose

expected length we wish to lower bound. The set C(q), q ∈ ω⊥, is a line segment in

the direction of z, noting that the difference of any two points in C(q) must be a

multiple of z. In particular, if C(p) 6= ∅, one may express C(p) = [λ0, λ0 + γz], for

some convex combination λ0, where γ := ‖C(p)‖1 as above. One may equivalently

define

C(p) = {λ ∈ Rn+ :

n∑
i=1

λi = 1,

n∑
i=1

λibi ∈ L},

that is, C(p) is the set of convex combination representing the edge L. It is now

direct to see that L has positive length iff γ > 0, that is, EB,l is equivalent to γ > 0.

The following lemma, whose proof is Exercise 1.6, encapsulates the properties of

C(q) that we will need.

Lemma 1.23. Let y :=
∑n
i=1|zi|πω⊥(bi) and h1 = ωTb1, . . . , hn = ωTbn. Then the

following hold:

1. ‖C(q)‖1 is a non-negative concave function of q ∈ conv(πω⊥(bi) : i ∈ [n]).

2. maxq∈conv(π
ω⊥ (bi):i∈[n])‖C(q)‖1 = ‖C(y)‖1 = 2.

3. length(L) = γ|
∑n
i=1 zihi|.

The factors on the right-hand side in the last item of Lemma 1.23 have identifiable
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meanings. The sum 2|
∑n
i=1 zihi| is the length of the longest chord of conv(b1, . . . , bn)

parallel to `. In Figure 1.4, this longest chord is represented by the line segment K ′.

It is the analogue of h1 − h2 from the two-dimensional case. The remaining term,

γ/2, is the ratio of the length of the edge L to the length of the longest chord. In

Figure 1.4 this is the ratio of the length of the line segment K to the length of the

line segment K ′. We note that this term has no analogue in 2 dimensions and so

lower bounding it will require new ideas. We can now lower bound the expected

length of L as follows:

E[γ|
n∑
i=1

zihi| | γ > 0] ≥ E[γ | γ > 0] inf
π
ω⊥ (bi):i∈[n]

E[|
n∑
i=1

zihi| | πω⊥(bi) : i ∈ [n]],

(1.6)

noting that (πω⊥(bi) : i ∈ [n]) determine z and γ.

We first lower bound the latter term, the expected maximum chord length, for

which we will need the induced probability density on h1, . . . , hn. This is given by

the following lemma, whose proof is a straightforward manipulation of the Jacobian

in Theorem 1.21.

Lemma 1.24. For any fixed values of the projections πω⊥(b1), . . . , πω⊥(bn), the

inner products h1, . . . , hn have joint probability density proportional to

|
n∑
i=1

zihi|
n∏
i=1

µi(R(hiω)).

Using Lemma 1.24 and an analoguous argument to that in Theorem 1.18, we can

express E[|
∑n
i=1 zihi| | πω⊥(bi) : i ∈ [n]] as the ratio E[(

∑n
i=1 zixi)

2]/E[|
∑n
i=1 zixi|],

where x1, . . . , xn are independent and each xi is distributed according to µi(R(xiω)).

Since
∑n
i=1 zixi has variance σ2‖z‖22 ≥ σ2‖z‖21/n = σ2/n, we may apply Lemma 1.17

to deduce the following lower bound.

Lemma 1.25. Fixing πω⊥(b1), . . . , πω⊥(bn), we have E[|
∑n
i=1 zihi|] ≥ σ/(2

√
n).

The remaining task is to lower bound E[γ | γ > 0]. This will require a number of

new ideas and some simplifying assumptions, which we sketch below.

The main intuitive observation is that γ > 0 is small essentially only when

p ∈ conv(πω⊥(bi) : i ∈ [n]) is close to the boundary of the convex hull. To show

that this does not happen on average, the main idea will be to show that for any

configuration πω⊥(b1), . . . , πω⊥(bn) for which γ is tiny, there is a nearly-equiprobable

one for which γ is lower bounded a function of n,m and σ. Here the move to the

improved configuration will correspond to pushing the “center” y of conv(πω⊥(bi) :

i ∈ [n]) towards p, where y is as in Lemma 1.23.

To be able to argue near-equiprobability, we will make the simplifying assumption

that the original densities µ1, . . . , µm are L-log-Lipschitz, for L = Θ(
√
n lnm/σ),

where we recall that f : Rn → R+ is L-log-Lipschitz if f(x) ≤ f(y)eL‖x−y‖, ∀x, y.
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While a variance σ2 Gaussian is not globally log-Lipschitz, it can be checked that is

L-log-Lipschitz within distance σ2L of its mean. By standard Gaussian tail bounds

the probability that any ai is at distance σ2L = Ω(σ
√
n lnm) from its mean is at

most m−Ω(n). Since an event occurring w.p. less than
(
m
n

)−1
contributes at most 1

to E[|edges(Q∩W )|], noting that
(
m
n

)
is a deterministic upper bound, it is intuitive

that we can assume L-log-Lipschitzness “wherever it matters”, though a rigorous

proof of this is beyond the scope of this chapter.

Using log-Lipschitzness, we will only be able to argue that close-by configura-

tions are equiprobable. For this to make a noticeable impact on γ, we will need

πω⊥(b1), . . . , πω⊥(bn) to not be too far apart to begin with. For this purpose, we let

ED denote the event that maxi,j‖πω⊥(bi)−πω⊥(bj)‖ ≤ D, for D = Θ(1+σ
√
n lnm).

It is useful to note that the original a1, . . . , am, which are farther apart, already sat-

isfy this distance requirement w.p. 1−m−Ω(n) using similar tail bound arguments

as above.

With these concepts, we will be able to lower bound E[γ | γ > 0, ED] in

Lemma 1.26 below. For this to be useful, we would like

E[γ | γ > 0] ≥ E[γ | γ > 0, ED]/2. (1.7)

While this may not be true in general, the main reason it can fail is if the starting

basis B has probability less than m−Ω(n) of forming an edge to begin with, in which

case it can be safely ignored anyway. We henceforth assume inequality (1.7).

Lemma 1.26. Letting L = Θ(
√
n lnm/σ), D = Θ(1 + σ

√
n lnm) be as above, we

have that E[γ | γ > 0, ED] ≥ Ω( 1
nDL ).

Proof sketch Let us start by fixing si := πω⊥(bi) − πω⊥(b1) for all 2 ≤ i ≤ n,

for which the condition ‖si‖ ≤ D, ‖si − sj‖ ≤ D, for all i, j ∈ {2, . . . , n} holds.

Note that this condition is equivalent to ED. Let S = conv(0, s2, . . . , sn) denote the

resulting shape of the projected convex hull. Let us now additionally fix h1, . . . , hn
arbitrarily.

At this point, the only degree of freedom left is in the position of πω⊥(b1). The

condition γ > 0 is now equivalent to p ∈ πω⊥(b1) + S ⇔ πω⊥(b1) ∈ p − S. From

here, the conditional density µ of πω⊥(b1) satisfies

µ ∝ µ1(R(πω⊥(b1)))

n∏
i=2

µi(R(πω⊥(b1) + si)),

where we note that fixing h1, . . . , hn, s2, . . . , sn makes the Jacobian in Theorem 1.21

constant.

As we mentioned above, we assume that µ1, . . . , µn are L-log-Lipschitz every-

where. This makes µ be nL-log-Lipschitz. Since p− S has diameter at most D and

γ is a concave function of πω⊥(b1) with maximum 2 by Lemma 1.23, we can use

Lemma 1.27 below to finish the sketch.
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The final lemma is Exercise 1.7.

Lemma 1.27. For a random variable x ∈ S ⊂ Rn having L-log-Lipschitz density

supported on a convex set S of diameter D and f : S → R+ concave, one has

E[f(x)] ≥ e−2 maxy∈S f(y)

max(DL,n)
.

Putting together Lemma 1.19, 1.20, 1.25, 1.26 and inequality 1.7, we get the

desired result

E[|edges(Q ∩W )|] ≤ O(1 + σ
√

lnm)
σ

2
√
n
· Ω( 1

nDL )

= O(n2σ−2
√

lnm(1 + σ
√
n lnm)(1 + σ

√
lnm)).

1.5 Discussion

We saw smoothed complexity results for linear programming in two different per-

turbation models. In the first model, the feasible region was highly structured and

“well-conditioned”, namely a flow polytope, and only the objective was perturbed.

In the second model, the feasible region was a general linear program whose con-

straint data was perturbed by Gaussians.

While the latter model is the more general, the LP’s it generates differ from

real-world LP’s in many ways. Real-world LP’s are often highly degenerate, due

to the combinatorial nature of many practical problems, and sparse, typically only

one percent of the constraint matrix entries are non-zero. The Gaussian constraint

perturbation model has neither of these properties. Second, it is folklore that the

number of pivot steps it takes to solve an LP is roughly linear in m or n. At least

from the perspective of the shadow vertex simplex method, this provably does not

hold for the Gaussian constraint perturbation model. Indeed, Borgwardt (1987)

proved that as m → ∞ and n is fixed, the shadow bound for Gaussian unit LPs

(where the means are all 0) is Θ(n1.5
√

lnm).

There are plenty of concrete open problems in this area. The shadow bound of

Theorem 1.13 is likely to be improvable, as it does not match the known Θ(n1.5
√

lnm)

bound for Gaussian unit LPs mentioned above. Already in two dimensions, the cor-

rect bound could be much smaller, as discussed in (Devillers et al., 2016). In the

i.i.d. Gaussian case, the edge counting strategy in Lemma 1.19 is exact, but our

lower bound on the expected edge length is much smaller than the true value. In

the smoothed case, the edge counting strategy seems too lossy already when n = 2.

The proof of Theorem 1.13 also works for any log-Lipschitz probability distribu-

tion with sufficiently strong tail bounds. However, nothing is known for distributions

with bounded support or distributions that preserve some meaningful structure of

the LP, such as most zeroes in the constraint matrix. One difficulty in extending
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the current proof lies in it considering even very unlikely hyperplanes for the basis

vectors to lie in.

In practice the shadow vertex pivot rule is outperformed by the commonly used

most-negative reduced cost rule, steepest edge rule, and Devex rule. However, there

are currently no theoretical explanations for why these rules would perform well.

The analyses discussed here do not extend to such pivot rules, due to making

heavy use of the local characterization of whether a given vertex is visited by the

algorithm.

We note that a major reason for the popularity of the simplex method is its

unparalleled effectiveness at solving sequences of related LPs, where after each

solve a column or row may be added or deleted from the current program. In

this context, the simplex method is easy to “warm start” from either the primal or

dual side, and typically only a few additional pivots solve the new LP. This scenario

occurs naturally in the context of integer programming, where one must solve many

related LP relaxations within a branch and bound tree or during the iterations of

a cutting plane method. Current theoretical analyses of the simplex method don’t

say anything about this scenario.

1.6 Notes

The shadow vertex simplex method was first introduced by Gass and Saaty (1955) to

solve bi-objective linear programming problems and is also known as the parametric

simplex algorithm.

Families of LPs on which the shadow vertex simplex method takes an exponential

number of steps were constructed by Murty (1980); Goldfarb (1983, 1994); Amenta

and Ziegler (1998); Gärtner et al. (2013). One such construction is the subject

of Exercise 1.1. A very interesting construction was given by Disser and Skutella

(2018), who gave a flow network on which it is NP-complete to decide whether

the SSP algorithm will ever use a given edge. Hence, the shadow vertex simplex

algorithm implicitly spends its exponential running time to solve hard problems.

The first probabilistic analysis of the simplex method is due Borgwardt, see

(Borgwardt, 1987), who studied the complexity of solving max cTx,Ax ≤ 1 when

the rows of A are sampled from a spherically symmetric distribution. He proved

a tight shadow bound of Θ(n2m1/(n−1), which is valid for any such distribution,

as well as the tight limit for the Gaussian distribution mentioned earlier. Both of

these bounds can be made algorithmic, losing a factor n, using Borgwardt’s DD

algorithm.

The smoothed analysis of the SSP algorithm is due to Brunsch et al. (2015). They

also proved that the running time bound holds for the SSP algorithm as applied to

the minimum-cost flow problem, and they showed a nearly matching lower bound.

The first smoothed analysis of the simplex method was by Spielman and Teng
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(2004), who introduced the concept of smoothed analysis and the perturbation

model of section 1.4. They achieved a bound of O(n55m86σ−30 + n70m86). This

bound was subsequently improved by Deshpande and Spielman (2005); Vershynin

(2009); Schnalzger (2014); Dadush and Huiberts (2018).

In this chapter, we used the DD algorithm for the Phase I unit LP, traversing n−1

shadow paths. Another algorithm for solving (Phase I Unit LP), which traverses

an expected O(1) shadow paths, can bring the smoothed complexity bound down

to O(n2σ−2
√

lnm+n3 ln3/2m). This procedure, which is a variant of an algorithm

of Vershynin (2009), as well as a rigorous proof of Theorem 1.13, can be found in

Dadush and Huiberts (2018).

The two-dimensional convex hull complexity of Gaussian perturbed points from

Theorem 1.18 was studied before by Damerow and Sohler (2004); Schnalzger (2014);

Devillers et al. (2016). The best general bound among them is O(
√

lnn+σ−1
√

lnn),

asymptotically slightly worse than the bound in Theorem 1.18.

The DD algorithm was first used for smoothed analysis by Schnalzger (2014). The

edge counting strategy based on the perimeter and minimum edge length is due to

Kelner and Spielman (2006). They proved that an algorithm based on the shadow

vertex simplex method can solve linear programs in weakly polynomial time. The

two-phase interpolation method used here was first introduced and analyzed in the

context of smoothed analysis by Vershynin (2009). The coordinate transformation

in Theorem 1.21 is called a Blaschke-Petkantschin identity. It is a standard tool in

the study of random convex hulls.

The number of pivot steps in practice is surveyed by Shamir (1987). More recent

experiments such as (Makhorin, 2017) remain bounded by a small linear function

of n + m, though a slightly super-linear function better fits the data according to

Andrei (2004).
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Exercises

1.1 In this exercise we show that the projection of an LP can have 2n vertices on

instances with n variables and 2n constraints. The Goldfarb cube in dimension

n is the LP

max xn

0 ≤ x1 ≤ 1

αx1 ≤ x2 ≤ 1− αx1

α(xk−1 − βxk−2) ≤ xk ≤ 1− α(xk−1 − βxk−2) for 3 ≤ k ≤ n

where α < 1/2 and β < α/4.

(a) Prove that the LP has 2n vertices.

(b) Prove that every vertex is optimal for some range of linear combinations

αen−1 + βen. Hint: a vertex maximizes an objective if that objective can

be written as a non-negative linear combination of the constraint vectors of

tight constraints.

(c) Show that it follows that the shadow vertex simplex method has worst-case

running time exponential in n.

(d) Can you adapt the instance such that the expected shadow vertex count

remains exponential when the shadow plane is randomly perturbed?

(e) Define zero-preserving perturbations to perturb only the non-zero entries

of the constraint matrix. Do the worst-case instances still have shadows

with exponentially many vertices after applying Gaussian zero-preserving

perturbations of variance O(1)?

1.2 Prove Lemma 1.10. Specifically, show that if a basis B ⊂ [m] induces the opti-

mal vertex of P for some objective c, then B induces a facet of Q intersecting

the ray cR++. Then, prove that this fact implies the lemma.

1.3 Prove Lemma 1.11.

1.4 Prove Lemma 1.17.

1.5 Verify that the Jacobian of the coordinate transformation in Theorem 1.18 is

|h1 − h2|.
1.6 Prove Lemma 1.23.

1.7 Prove Lemma 1.27. Hint: let y = argmaxy∈Sf(y) and define S′ := y+α(S−y).

Prove that Pr[x ∈ S′] ≥ e−2 for α = 1− 1
max(DL,n) , and that f(x) ≥ (1−α)f(y)

for all x ∈ S′.
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